Algorithm to retrieve SO$_2$ layer height from UV backscattered measurements: Application to OMI and TROPOMI and comparison with other satellite datasets

Nicolas Theys1, Christophe Lerot1, Jeroen Van Gent1, Hugues Brenot1, L. Clarisse2, Michel Van Roozendael1

1Royal Belgian Institute for Space Aeronomy (IASB-BIRA), 3 Avenue Circulaire, B-1180 Brussels, Belgium
2Free University of Brussels (ULB), Brussels, Belgium

1. Abstract

Here we introduce an algorithm to derive an effective SO$_2$ layer height (LH) which can be activated for enhanced SO$_2$ vertical columns (typically $>$25 DU). It is based on an iterative SO$_2$ optical depth fitting procedure. Although it makes use of a large look-up-table (of SO$_2$ optical depth spectra), the scheme is adequately fast for an operational environment. We demonstrate the technique based on synthetic spectra and apply the algorithm to OMI and TROPOMI for a number of volcanic eruptions. Results are compared to other satellite datasets, such as CALIOP attenuated backscattered profiles and SO$_2$ height estimates from MLS and IASI (Clarisse et al., 2014). In general, we find an excellent agreement with differences on the retrieved height of less than 1-2 km. The results for TROPOMI are discussed in more details because SO$_2$ plume height data derived at high spatial resolution can provide added-value information on the eruption chronology. Plans for future work, including the possible implementation of a near-real-time SO$_2$ plume height algorithm in the Support to Aviation Control Service (SACS)/EUNADICS-AV Early Warning System, are addressed.

2. Algorithm

Joint SO$_2$ LH and VCD retrieval: iterative SO$_2$ optical depth fitting

$$\tau_{\text{meas}} = P + \text{SO}_2 + \tau_{\text{ring}}$$

$$\tau_{\text{meas}} = \log(I/I_0)$$

P: 3rd order polyn
τ_{SO_2}: 4 O$_3$ xs (2T + 2 Pukite terms)
τ_{SO_2}: fct(LH, VCD, λ) splined from large LUT with 9 entries (TO3, SZA, VZA, RAA, Surf Refl, SurfH, SO2 LH, SO2 VCD, λ)
τ_{ring}: Molecular Ring correction fct(O$_3$,SO$_2$)

$$\tau_{\text{meas}} = \tau_{\text{SO}_2,i} + \tau_{\text{O}_3} + \alpha.d\tau_{\text{SO}_2,i}/d\text{LH} + \beta.d\tau_{\text{SO}_2,i}/d\text{VCD} + \tau_{\text{Ring}}$$

Fitting interval: 310.5-326 nm
Surf Refl: retrieved from 340 nm intensity
Maximum iterations: 10

3. Results from synthetic elastic spectra (closed-loop retrievals)

Input
SO$_2$ VCD: 5-1000DU
SO$_2$LH: 2.5, 6.5, 13.5 km

Results
Mean+std retrieved SO$_2$ LH for 100 noisy spectra (SNR:1000)

Findings
Good precision and accuracy (few 100s of meters) for all conditions with SO$_2$>25DU, in line with previous study (Nowlan et al., 2011).

4. OMI results: 2008 Kasatochi eruption

Comparison with IASI, MLS and CALIOP indicates agreement on plume height with differences not larger than 1-2km, except for plume edges.

5. TROPOMI results

Sinabung eruption: 19.02.2018
Raikoke eruption: 25.06.2019

6. Conclusions and Future work

• SO$_2$ layer height retrievals applied to OMI and TROPOMI. Good agreement with other satellite plume height estimates (IASI, MLS, CALIOP) with differences less than 1-2km.

• Important information on eruptions can be obtained from high-resolution TROPOMI data which reveals SO$_2$ injections at various heights.

• More validation and development is needed for fresh ash-laden plumes. Preliminary SO$_2$ height results for both synthetic and real spectra indicates strong underestimation for those cases.

• The LUT approach makes the implementation of the SO$_2$ plume height algorithm (e.g., in the Support to Aviation Control Service (SACS)) possible in near-real-time (current processing time: 0.1s/spec).

References

Acknowledgements

This work has been performed in the frame of the EUL2PP, TROPOMI and EUNADICS-AV projects. We acknowledge financial support from ESA ISPP and Belgium FOD. EUL2PP projects. The EUNADICS-AV project has received funding from the European Union’s Horizon 2020 research programme for Societal challenges - smart, green and integrated transport under grant agreement no. 727946.